вівторок, 7 листопада 2017 р.

Нейронні мережі не вміють ставити перед собою завдання, тому повстання машин можна поки що не очікувати.

     Соцмережі захоплені мобільним додатком для редагування фотографій, який заснований на принципі нейронних мереж.
Китайський сервіс Meitu підкорив користувачів функцією Hand-drawn, що перетворює людину на "кавайного" аніме-персонажа.
Таке повальне захоплення фоторедактором спостерігалося влітку минулого року. Тоді у тренді був додаток Prisma, який робив з фотографії "витвір мистецтва", також використовуючи нейромережі.
    (Meitu збирає персональні дані і може змінювати налаштування телефону. Воно накопичує дані аж до метражу квартири. Ймовірно Meitu зберігає інформацію через новий китайський закон про заборонений контент)
     За такими, здавалося б, легковажними додатками стоїть технологія створення штучного інтелекту. Наприклад, днями вчені оголосили, що змогли навчити нейромережу розпізнавати рак шкіри.
     Вивчення нейронних мереж почалося з появою перших комп'ютерів. Але тільки зараз ця галузь перейшла з академічних інститутів до корпорацій і невеликих стартапів і тепер доступна не тільки вченим, а входить у життя простих людей.
Корреспондент.net вирішив розібратися, що таке нейронна мережа і де її вже застосовують.

Нейронна мережа як машинне навчання

     Штучні нейронні мережі розробляються, в тому числі, щоб зрозуміти, як працює мозок людини. Вони також роблять спроби відтворити його роботу.
     Нейромережа є системою, яка навчається. Вона працює за алгоритмами, а також на основі минулого досвіду. Штучний нейрон є спрощеною моделлю природного.
     Говорячи дуже просто, нейромережа - це комп'ютерна програма, яка дізнається інформацію і реагує на неї, а не виконує конкретні команди. Це серія взаємопов'язаних алгоритмів, які, працюючи разом, можуть сприймати візерунки і повторювати їх.
      Найпоширенішими застосуваннями нейронних мереж є класифікація, пророкування (падіння акцій і т.д.) і розпізнавання.
     Для того, щоб нейронна мережа могла коректно вирішувати поставлені завдання, потрібно "прогнати" її роботу на десятках мільйонів наборів вхідних даних. Наприклад показати їй букву "А" різними шрифтами, щоб побачити, які букви вона вирішить прийняти схожими на неї. Потім людина підтверджує, які букви насправді є "А".
       У процесі навчання нейронна мережа знаходить складні залежності між вхідними даними і вихідними, а також узагальнює їх. Якщо навчання пройшло успішно, то нейромережа на виході дасть результат, який був відсутній у навчальній вибірці.
      Google, наприклад, використовує нейронні мережі для розвитку перекладача. Він навчається покращувати ці переклади, виходячи з правильних перекладів, з плином часу.
       У таких фоторедакторах, як Prisma і Meitu, використовується нейромережа, яка заснована на переході від конкретних особливостей зображення до більш абстрактних деталей.

Немає коментарів:

Дописати коментар